A live Link from GIS to the Internet of Things

Dustin Demuth

Geoinformatik 2013 - 13.03.

question

how to integrate live data from a sensor platform into GIS, without using third party services?

question

how to integrate data of sensor platforms into GIS, without using third party services?

answer

connect the sensor platform to the internet and turn it into a feature service!

internet of things concept

- unique identification of things
- physical attributes have virtual representations
- internet protocols are used to transport the information

internet of things concept

- unique identification of things
- physical attributes have virtual representations
- internet protocols are used to transport the information

Internet Of Things Bridging the gap Appendix

internet of things concept

- unique identification of things
- physical attributes have virtual representations
- internet protocols are used to transport the information

Internet Of Things Bridging the gap Appendix

internet of things

- unique identification of things
- physical attributes have virtual representations
- internet protocols are used to transport the information

summary

IoT is network of physical things and their virtual representations which use the internet protocols as transport mechanisms [1].

web of things adds an application layer to the iot

- extends the IoT [2]
- each thing is a resource with an URI [3]
- HTTP [4] and REST [5]

web of things adds an application layer to the iot

- extends the IoT [2]
- each thing is a resource with an URI [3]
- HTTP [4] and REST [5]

web of things adds an application layer to the iot

- extends the IoT [2]
- each thing is a resource with an URI [3]
- HTTP [4] and REST [5]

Internet Of Things Bridging the gap Appendix

web of things adds an application layer to the iot

- extends the IoT [2]
- each thing is a resource with an URI [3]
- HTTP [4] and REST [5]

summary

WoT builds an application layer on top of the IoT and makes accessing things more simple, by using lightweight web standards.

concept

turn each measurement into a resource

- apply WoT paradigm to sensor platforms
 - each sensor is a resource, represented as a layer
 - each measurement is a resource, represented as a feature
- use methods which already fit into the GIS domain

http, rest

concept

turn each measurement into a resource

- apply WoT paradigm to sensor platforms
 - each sensor is a resource, represented as a layer
 - each measurement is a resource, represented as a feature
- use methods which already fit into the GIS domain

example.org/sensorlayer

concept

turn each measurement into a resource

- apply WoT paradigm to sensor platforms
 - each sensor is a resource, represented as a layer
 - each measurement is a resource, represented as a feature
- use methods which already fit into the GIS domain

example.org/sensorlayer/measurementfeature

nternet Of Things Bridging the gap Appendix

concept

turn each measurement into a resource

- apply WoT paradigm to sensor platforms
 - each sensor is a resource, represented as a layer
 - each measurement is a resource, represented as a feature
- use methods which already fit into the GIS domain

OGC compliance

- affordable, open, customizable hardware
- capable of reading various sensors
- storage
- sufficient processing power

- affordable, open, customizable hardware
- capable of reading various sensors
- storage
- sufficient processing power

- affordable, open, customizable hardware
- capable of reading various sensors
- storage
- sufficient processing power

- affordable, open, customizable hardware
- capable of reading various sensors
- storage
- sufficient processing power

- lightweight data format & interfaces \rightarrow JSON & REST
- standardized interface \rightarrow esri / OGC GeoServices REST API [6]

- lightweight data format & interfaces \rightarrow JSON & REST
- standardized interface \rightarrow esri / OGC GeoServices REST API [6]

nternet Of Things Bridging the gap Appendix

GeoServices REST API provides interface definitions for:

- Map Service
- Geocode Service
- Geometry Service
- Geoprocessing Service
- Image Service
- Feature Service

nternet Of Things Bridging the gap Appendix

GeoServices REST API provides interface definitions for:

- Map Service
- Geocode Service
- Geometry Service
- Geoprocessing Service
- Image Service
- Feature Service

GeoServices REST API

Request examples

/ example.org/geoservices/
service description and array of available layers

/<id>/ example.org/geoservices/1/

detailed information on the layer which is

identified by 1

/<id>/query example.org/geoservices/1/query

list of features within a layer

/<id>/<oid> example.org/geoservices/1/15328

single feature of layer 1, identified by object ic

15328

nternet Of Things Bridging the gap Appendix

GeoServices REST API

Request examples

/ example.org/geoservices/
service description and array of available layers

/<id>/ example.org/geoservices/1/ detailed information on the layer which is identified by 1

/<id>/query example.org/geoservices/1/query

ovample org/geogoryjceg/1/15398

single feature of layer 1, identified by object ic

15328

GeoServices REST API

Request examples

/ example.org/geoservices/
service description and array of available layers
/<id>
/<id>
/example.org/geoservices/1/
detailed information on the layer which is
identified by 1
/<id>
/<id>
/example.org/geoservices/1/query
list of features within a layer
/example.org/geoservices/1/15328
single feature of layer 1, identified by object id

GeoServices REST API

Request examples

/ <id>/</id>	example.org/geoservices/ service description and array of available layers example.org/geoservices/1/ detailed information on the layer which is identified by 1
/ <id>/query</id>	example.org/geoservices/1/query
	list of features within a layer
/ <id>/<oid></oid></id>	example.org/geoservices/1/15328
	single feature of layer 1, identified by object id
	15328

Request examples: filtering

/<id>/query? example.org/geoservices/1/query?
geometryType=GeometryPoint&geometry=7,52
features of layer 1 which are on point (7,52)
/<id>/query? example.org/geoservices/1/query?f=json
features of layer 1 encoded in json-format
(standard)
& parameters where, returnGeometry, inSR, outSR,
spatialRel,relationParam, objectIds,
outFields, returnIdsOnly

Request examples: filtering

but:

due to processing and memory constraints filtering is not implemented in our approach

workflow


```
"serviceDescription": "RESTful GeoServices SenseBox",
"layers": [
    {
      "id": "1",
      "name": "temperature"
    }
]
```



```
/<id>/
"id": "1".
"type": "Feature Layer",
"displayField": "value",
"capabilities": "Query",
"geometryType": "
   GeometryPoint",
"minScale": 0,
"maxScale": 0,
"spatialReference": {
    "wkid": 4326
},
```

```
"objectIdField": "objectid
"fields":
    "name": "objectid",
    "type": "FieldTypeOID"
    "alias": "Object ID"
  <...>
```



```
/<id>/query
```

```
"objectIdFieldName": "objectid",
"geometryType": "GeometryPoint",
"spatialReference": {
  "wkid": 4326
},
"fields": [
    "name": "objectid",
    "type": "FieldTypeOID",
    "alias": "Object ID"
 },
 <...>
],
```



```
"features": [
                                    "attributes": {
  "geometry": {
                                      "ObjectID": "15328",
    "point": {
                                      "Time": "2013-01-08
      "x": 7.652118.
                                          T14:36:03Z",
      "y": 51.934969
                                      "Value": "15"
    },
    "spatialReference":
                                  <...>
      "wkid": 4326
                                  }]}
```

evaluation

- + low power consumption
- + simple integration of sensors into gis
- + easy customization by the users
 - limited in speed
- limited in memory
- missing multithreading
- o currently limited choice of clients

what comes next?

build clients more powerful hardware

thank you

Dustin Demuth d.demuth@52north.org

references

Putting things to rest.

[2] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.

From the internet of things to the web of things: Resource oriented architecture and best practices. In Dieter Uckelmann, Mark Harrison, and Florian Michahelles, editors, Architecting the Internet of Things.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1.

[5] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture.

Geoservices rest specification version 1.0.

appendix

images

The 52° North logo is property of 52° North. If not denoted otherwise, images are self-made or had been licensed as public domain

acknowledgements

This work has been partially supported by the project *Flexible and Efficient Integration of Sensors and Sensor Web Services* funded by the ERDF program for NRW (contract number N 114/2008), proceeding research was done during a Google Summer of Code 2012 project